Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition

نویسندگان

  • Tatiana Baumuratova
  • Simona Dobre
  • Thierry Bastogne
  • Thomas Sauter
چکیده

Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA - a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model

Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...

متن کامل

Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model

Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...

متن کامل

Mathematical Model of Novel COVID-19 and Its Transmission Dynamics

In this paper, we formulated a dynamical model of COVID-19 to describe the transmission dynamics of the disease. The well possedness of the formulated model equations was proved. Both local and global stability of the disease free equilibrium and endemic equilibrium point of the model equation was established using basic reproduction number. The results show that, if the basic reproduction numb...

متن کامل

Sensitivity Analysis of the Critical Conditions of AFM-Based Biomanipulation of Cylindrical Biological Particles in Various Biological Mediums by Means of the Sobol Method

The sensitivity analysis of atomic force microscope (AFM) based manipulation of gold spherical nanoparticles in air medium has been carried out in previous research works. In the AFM-based manipulations conducted in various biological liquid mediums, the new environmental parameters associated with these biological fluids also affect the dynamics of the manipulation process. Therefore in this r...

متن کامل

Dynamical predictors of an imminent phenotypic switch in bacteria.

Single cells can stochastically switch across thresholds imposed by regulatory networks. Such thresholds can act as a tipping point, drastically changing global phenotypic states. In ecology and economics, imminent transitions across such tipping points can be predicted using dynamical early warning indicators. A typical example is 'flickering' of a fast variable, predicting a longer-lasting sw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013